Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Dent ; 5(2): 173-9, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21494385

RESUMO

OBJECTIVES: The aim of this study was to investigate the superficial texture of composite restorations after different bleaching protocols. METHODS: Filtek Supreme (S), Filtek Z350 (F), and Grandio (G) were compared to Opallis (O) and Filtek Z250 (Z) (control microhybrid composites) and to bovine enamel using three different bleaching agents: 35% hydrogen peroxide Whiteness HP (WHP), 35% Whiteness HP MAXX (WMAXX) and 16% carbamide peroxide Whiteness Standard (WS). Six specimens from each composite were treated using each bleaching agent, according to the manufacturers' instructions. Three random sites were measured for superficial roughness (Hommel Tester T 1000) weekly for each sample. Data were analyzed for each bleaching system using two-way ANOVA and Bonferroni tests at 5% significance level. RESULTS: WHP treatment significantly altered the Filtek Supreme composite over time. When WMAXX was used, Grandio displayed the most significant alterations in surface roughness throughout the evaluation period, which was not observed for the other nanocomposites. Using WS, Filtek Z250 presented significant surface alterations over time, which was not seen in the nanofilled materials. CONCLUSIONS: Surface roughness alteration was material and time-dependent. The bleaching gels affected nanofilled and microhybrid composite resins. Enamel was the surface less affected by bleaching.

2.
J Appl Oral Sci ; 17(4): 274-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19668984

RESUMO

OBJECTIVES: Production of acids such as lactic acid contributes to establish a cariogenic environment that leads to dental substrate demineralization. Fluoride plays an important role in this case and, as fluoride-releasing materials, glass-ionomer cements are expected to contribute to minimize deleterious reactions. This study evaluated interactions of glass-ionomer cements used in atraumatic restorative treatment (ART-GICs) with an aqueous lactic acid solution, testing the null hypotheses that no changes occur in the pH of the solution or on the surface roughness and mass of the ART-GICs when exposed to lactic acid solution over a 6-week period. MATERIAL AND METHODS: Ketac Molar, Fuji IX, Vitro Molar and Magic Glass were tested, and compared to Filtek Z250 and Ketac Fil Plus as control groups. Six specimens of each material were made according to manufacturers' instructions. The pH of the solution and roughness and mass changes of each specimen were determined over 6 weeks. Each specimen was individually stored in 2 mL of 0.02 M lactic acid solution for 1 week, renewing the solution every week. pH of solution and mass of the specimens were monitored weekly, and surface roughness of the specimens was assessed before and at the end of the 6-week acid challenge. pH and mass data were analyzed statistically by repeated measures using one-way ANOVA and Tukey's post-hoc tests for each material. Paired t-tests were used for roughness analysis. Tukey's post-hoc tests were applied to verify differences of final roughness among the materials. Significance level was set at 5%. RESULTS: The null hypotheses were partially rejected. All materials were able to increase the pH of the lactic acid solution and presented rougher surfaces after immersion, while mass change was minimal and generally not statistically significant. CONCLUSIONS: These findings can be helpful to predict the performance of these materials under clinical conditions. A protective action against the carious process with significant surface damage due to erosion may be expected.


Assuntos
Cimentos Dentários/química , Cimentos de Ionômeros de Vidro/química , Vidro , Ácido Láctico/química , Análise de Variância , Concentração de Íons de Hidrogênio , Técnicas In Vitro
3.
Braz Oral Res ; 20(4): 342-6, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17242796

RESUMO

The Light Emitting Diodes (LED) technology has been used to photoactivate composite resins and there is a great number of published studies in this area. However, there are no studies regarding resin-modified glass-ionomer cements (RMGIC), which also need photoactivation. Therefore, the aim of this study was to evaluate water sorption of two RMGIC photoactivated with LED and to compare this property to that obtained with a halogen light curing unit. A resin composite was used as control. Five specimens of 15.0 mm in diameter x 1.0 mm in height were prepared for each combination of material (Fuji II LC Improved, Vitremer, and Filtek Z250) and curing unit (Radii and Optilight Plus) and transferred to desiccators until a constant mass was obtained. Then the specimens were immersed into deionized water for 7 days, weighed and reconditioned to a constant mass in desiccators. Water sorption was calculated based on weight and volume of specimens. The data were analyzed by two-way ANOVA and Tukey test (p < 0.05). Specimens photocured with LED presented significantly more water sorption than those photocured with halogen light. The RMGIC absorbed statistically significant more water than the resin composite. The type of light curing unit affected water sorption characteristics of the RMGIC.


Assuntos
Resinas Compostas/química , Cimentos de Ionômeros de Vidro/química , Luz , Água , Absorção , Análise de Variância , Resinas Compostas/efeitos da radiação , Cimentos de Ionômeros de Vidro/efeitos da radiação , Halogênios , Teste de Materiais , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...